\(\int \frac {\cos ^{\frac {5}{2}}(c+d x) (A+C \cos ^2(c+d x))}{(a+b \cos (c+d x))^2} \, dx\) [714]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 370 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^2} \, dx=\frac {\left (3 a^2 b^2 (5 A-8 C)+35 a^4 C-2 b^4 (5 A+3 C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^4 \left (a^2-b^2\right ) d}-\frac {a \left (a^2 b^2 (9 A-20 C)+21 a^4 C-4 b^4 (3 A+C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b^5 \left (a^2-b^2\right ) d}-\frac {a^2 \left (5 A b^4-3 a^2 b^2 (A-3 C)-7 a^4 C\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{(a-b) b^5 (a+b)^2 d}-\frac {a \left (3 A b^2+7 a^2 C-4 b^2 C\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b^3 \left (a^2-b^2\right ) d}+\frac {\left (5 A b^2+7 a^2 C-2 b^2 C\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 b^2 \left (a^2-b^2\right ) d}-\frac {\left (A b^2+a^2 C\right ) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))} \]

[Out]

1/5*(3*a^2*b^2*(5*A-8*C)+35*a^4*C-2*b^4*(5*A+3*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(s
in(1/2*d*x+1/2*c),2^(1/2))/b^4/(a^2-b^2)/d-1/3*a*(a^2*b^2*(9*A-20*C)+21*a^4*C-4*b^4*(3*A+C))*(cos(1/2*d*x+1/2*
c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/b^5/(a^2-b^2)/d-a^2*(5*A*b^4-3*a^2*b^2*(A
-3*C)-7*a^4*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2)
)/(a-b)/b^5/(a+b)^2/d+1/5*(5*A*b^2+7*C*a^2-2*C*b^2)*cos(d*x+c)^(3/2)*sin(d*x+c)/b^2/(a^2-b^2)/d-(A*b^2+C*a^2)*
cos(d*x+c)^(5/2)*sin(d*x+c)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))-1/3*a*(3*A*b^2+7*C*a^2-4*C*b^2)*sin(d*x+c)*cos(d*x+
c)^(1/2)/b^3/(a^2-b^2)/d

Rubi [A] (verified)

Time = 1.50 (sec) , antiderivative size = 370, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3127, 3128, 3138, 2719, 3081, 2720, 2884} \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^2} \, dx=-\frac {\left (a^2 C+A b^2\right ) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac {\left (7 a^2 C+5 A b^2-2 b^2 C\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 b^2 d \left (a^2-b^2\right )}-\frac {a \left (7 a^2 C+3 A b^2-4 b^2 C\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b^3 d \left (a^2-b^2\right )}+\frac {\left (35 a^4 C+3 a^2 b^2 (5 A-8 C)-2 b^4 (5 A+3 C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^4 d \left (a^2-b^2\right )}-\frac {a \left (21 a^4 C+a^2 b^2 (9 A-20 C)-4 b^4 (3 A+C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b^5 d \left (a^2-b^2\right )}-\frac {a^2 \left (-7 a^4 C-3 a^2 b^2 (A-3 C)+5 A b^4\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b^5 d (a-b) (a+b)^2} \]

[In]

Int[(Cos[c + d*x]^(5/2)*(A + C*Cos[c + d*x]^2))/(a + b*Cos[c + d*x])^2,x]

[Out]

((3*a^2*b^2*(5*A - 8*C) + 35*a^4*C - 2*b^4*(5*A + 3*C))*EllipticE[(c + d*x)/2, 2])/(5*b^4*(a^2 - b^2)*d) - (a*
(a^2*b^2*(9*A - 20*C) + 21*a^4*C - 4*b^4*(3*A + C))*EllipticF[(c + d*x)/2, 2])/(3*b^5*(a^2 - b^2)*d) - (a^2*(5
*A*b^4 - 3*a^2*b^2*(A - 3*C) - 7*a^4*C)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/((a - b)*b^5*(a + b)^2*d) -
 (a*(3*A*b^2 + 7*a^2*C - 4*b^2*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*b^3*(a^2 - b^2)*d) + ((5*A*b^2 + 7*a^2*C
 - 2*b^2*C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*b^2*(a^2 - b^2)*d) - ((A*b^2 + a^2*C)*Cos[c + d*x]^(5/2)*Sin[c
 + d*x])/(b*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3127

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^
(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - (A*d*(a*d*(n
 + 2) - b*c*(n + 1)) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b*(A*d^2*(m + n + 2) + C*(c^2
*(m + 1) + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3128

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e
+ f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*
x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n +
2) - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d
^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\left (A b^2+a^2 C\right ) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac {\int \frac {\cos ^{\frac {3}{2}}(c+d x) \left (\frac {5}{2} \left (A b^2+a^2 C\right )-a b (A+C) \cos (c+d x)-\frac {1}{2} \left (5 A b^2+7 a^2 C-2 b^2 C\right ) \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx}{b \left (a^2-b^2\right )} \\ & = \frac {\left (5 A b^2+7 a^2 C-2 b^2 C\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 b^2 \left (a^2-b^2\right ) d}-\frac {\left (A b^2+a^2 C\right ) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac {2 \int \frac {\sqrt {\cos (c+d x)} \left (-\frac {3}{4} a \left (5 A b^2+7 a^2 C-2 b^2 C\right )+\frac {1}{2} b \left (5 A b^2+2 a^2 C+3 b^2 C\right ) \cos (c+d x)+\frac {5}{4} a \left (3 A b^2+7 a^2 C-4 b^2 C\right ) \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx}{5 b^2 \left (a^2-b^2\right )} \\ & = -\frac {a \left (3 A b^2+7 a^2 C-4 b^2 C\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b^3 \left (a^2-b^2\right ) d}+\frac {\left (5 A b^2+7 a^2 C-2 b^2 C\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 b^2 \left (a^2-b^2\right ) d}-\frac {\left (A b^2+a^2 C\right ) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac {4 \int \frac {\frac {5}{8} a^2 \left (3 A b^2+7 a^2 C-4 b^2 C\right )-\frac {1}{4} a b \left (15 A b^2+\left (14 a^2+b^2\right ) C\right ) \cos (c+d x)-\frac {3}{8} \left (3 a^2 b^2 (5 A-8 C)+35 a^4 C-2 b^4 (5 A+3 C)\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{15 b^3 \left (a^2-b^2\right )} \\ & = -\frac {a \left (3 A b^2+7 a^2 C-4 b^2 C\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b^3 \left (a^2-b^2\right ) d}+\frac {\left (5 A b^2+7 a^2 C-2 b^2 C\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 b^2 \left (a^2-b^2\right ) d}-\frac {\left (A b^2+a^2 C\right ) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {4 \int \frac {-\frac {5}{8} a^2 b \left (3 A b^2+7 a^2 C-4 b^2 C\right )-\frac {5}{8} a \left (a^2 b^2 (9 A-20 C)+21 a^4 C-4 b^4 (3 A+C)\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{15 b^4 \left (a^2-b^2\right )}+\frac {\left (3 a^2 b^2 (5 A-8 C)+35 a^4 C-2 b^4 (5 A+3 C)\right ) \int \sqrt {\cos (c+d x)} \, dx}{10 b^4 \left (a^2-b^2\right )} \\ & = \frac {\left (3 a^2 b^2 (5 A-8 C)+35 a^4 C-2 b^4 (5 A+3 C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^4 \left (a^2-b^2\right ) d}-\frac {a \left (3 A b^2+7 a^2 C-4 b^2 C\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b^3 \left (a^2-b^2\right ) d}+\frac {\left (5 A b^2+7 a^2 C-2 b^2 C\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 b^2 \left (a^2-b^2\right ) d}-\frac {\left (A b^2+a^2 C\right ) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac {\left (a^2 \left (5 A b^4-3 a^2 b^2 (A-3 C)-7 a^4 C\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 b^5 \left (a^2-b^2\right )}-\frac {\left (a \left (a^2 b^2 (9 A-20 C)+21 a^4 C-4 b^4 (3 A+C)\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 b^5 \left (a^2-b^2\right )} \\ & = \frac {\left (3 a^2 b^2 (5 A-8 C)+35 a^4 C-2 b^4 (5 A+3 C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^4 \left (a^2-b^2\right ) d}-\frac {a \left (a^2 b^2 (9 A-20 C)+21 a^4 C-4 b^4 (3 A+C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b^5 \left (a^2-b^2\right ) d}-\frac {a^2 \left (5 A b^4-3 a^2 b^2 (A-3 C)-7 a^4 C\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{(a-b) b^5 (a+b)^2 d}-\frac {a \left (3 A b^2+7 a^2 C-4 b^2 C\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b^3 \left (a^2-b^2\right ) d}+\frac {\left (5 A b^2+7 a^2 C-2 b^2 C\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 b^2 \left (a^2-b^2\right ) d}-\frac {\left (A b^2+a^2 C\right ) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.62 (sec) , antiderivative size = 354, normalized size of antiderivative = 0.96 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^2} \, dx=\frac {\frac {\frac {2 \left (a^2 b^2 (15 A-32 C)+35 a^4 C-6 b^4 (5 A+3 C)\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+\frac {8 a \left (15 A b^2+\left (14 a^2+b^2\right ) C\right ) \left ((a+b) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )\right )}{a+b}+\frac {6 \left (3 a^2 b^2 (5 A-8 C)+35 a^4 C-2 b^4 (5 A+3 C)\right ) \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a b^2 \sqrt {\sin ^2(c+d x)}}}{(a-b) (a+b)}+4 \sqrt {\cos (c+d x)} \left (-20 a C \sin (c+d x)-\frac {15 a^2 \left (A b^2+a^2 C\right ) \sin (c+d x)}{\left (a^2-b^2\right ) (a+b \cos (c+d x))}+3 b C \sin (2 (c+d x))\right )}{60 b^3 d} \]

[In]

Integrate[(Cos[c + d*x]^(5/2)*(A + C*Cos[c + d*x]^2))/(a + b*Cos[c + d*x])^2,x]

[Out]

(((2*(a^2*b^2*(15*A - 32*C) + 35*a^4*C - 6*b^4*(5*A + 3*C))*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)
 + (8*a*(15*A*b^2 + (14*a^2 + b^2)*C)*((a + b)*EllipticF[(c + d*x)/2, 2] - a*EllipticPi[(2*b)/(a + b), (c + d*
x)/2, 2]))/(a + b) + (6*(3*a^2*b^2*(5*A - 8*C) + 35*a^4*C - 2*b^4*(5*A + 3*C))*(-2*a*b*EllipticE[ArcSin[Sqrt[C
os[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a),
 ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b^2*Sqrt[Sin[c + d*x]^2]))/((a - b)*(a + b)) + 4*Sqrt[Cos[c
 + d*x]]*(-20*a*C*Sin[c + d*x] - (15*a^2*(A*b^2 + a^2*C)*Sin[c + d*x])/((a^2 - b^2)*(a + b*Cos[c + d*x])) + 3*
b*C*Sin[2*(c + d*x)]))/(60*b^3*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1336\) vs. \(2(434)=868\).

Time = 24.35 (sec) , antiderivative size = 1337, normalized size of antiderivative = 3.61

method result size
default \(\text {Expression too large to display}\) \(1337\)

[In]

int(cos(d*x+c)^(5/2)*(A+C*cos(d*x+c)^2)/(a+cos(d*x+c)*b)^2,x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4/5*C/b^2/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/
2*c)^2)^(1/2)*(4*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-14*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+6*sin(1/2*
d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(
1/2*d*x+1/2*c),2^(1/2))+9*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+
1/2*c),2^(1/2)))-4/3/b^3*C*(2*a+3*b)*(2*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-sin(1/2*d*x+1/2*c)^2*cos(1/2*d
*x+1/2*c)+2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)
)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*s
in(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)-4*a^2/b^4*(3*A*b^2+5*C*a^2)/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)
^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(co
s(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))-2*a^3*(A*b^2+C*a^2)/b^5*(-1/a*b^2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/
2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-1/2/a/(a+b)*(sin(1/2*d*x+1/2*c)^2)^(
1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*
d*x+1/2*c),2^(1/2))-1/2/(a^2-b^2)*b/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1
/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2/(a^2-b^2)*b/a*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Elli
pticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+
1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b
),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))+2/b^4*(A*
b^2+3*C*a^2+4*C*a*b+3*C*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/
2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)
))-2*(2*A*a*b^2+A*b^3+4*C*a^3+3*C*a^2*b+2*C*a*b^2+C*b^3)/b^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*
c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))/sin(
1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^4 + A*cos(d*x + c)^2)*sqrt(cos(d*x + c))/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a
^2), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(5/2)*(A+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*cos(d*x + c)^(5/2)/(b*cos(d*x + c) + a)^2, x)

Giac [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*cos(d*x + c)^(5/2)/(b*cos(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^2} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{5/2}\,\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int((cos(c + d*x)^(5/2)*(A + C*cos(c + d*x)^2))/(a + b*cos(c + d*x))^2,x)

[Out]

int((cos(c + d*x)^(5/2)*(A + C*cos(c + d*x)^2))/(a + b*cos(c + d*x))^2, x)